




1. Introduction

In 11-51 various types of mosaic models for images

were considered, and a number of properties of such models

were derived. This paper reports some experiments on apply-

ing a set of mosaic models to several textures from the

Brodatz album [6] and to some terrain textures.

Section 2 reviews the mosaic models and their properties.

Section 3 discusses some issues concerning the modeling ap-

proach. Section 4 describes the experiments, and Section 5

presents some comments on the results.



2. Mosaic models

This section briefly reviews some planar geometrical

processes that define the models, and presents the proper-

ties of components in binary images that are used in the

experiments described in Section 4. For further details

on the models, see [1-5,9].

We use the following notation:

p 7 probability that a cell is colored black

X intensity of the Poisson point process

d E side length of a cell, or a square bomb

Ac expected component area

S expected number of cells per component when each cell

has an expected number N of neighbors. Fig. 1 presents

graphs of SN  as a function of p for N= 3, 4 and 6.

P c expected component perimeter.



2.1 Cell structure models

Cell structure mosaics are constructed in two steps:

1) Tessellate a planar region into cells. We will only

consider tessellations composed of bounded convex

polygons.

2) Independently assign one of m colors clC 2 ,...,cm to

each cell according to a fixed set of probabilities
m

Pl"..jpm p = 1
i=i

The set of colors may correspond to a set of values of any

property, not necessarily gray level.

Cell structure models form a family whose members differ

in the manner in which the plane is tessellated. We will

describe some important members of this family, starting from

the three regular tessellations and progressing towards

random ones.

a) Checkerboard model. In this model, the origin and

orientation of the axes are chosen randomly, and the

plane is tessellated into squares.

Ac = S4d
2

PC = 4S4d(l-p)

b) Hexagonal model. This is analogous to the checker-

board model, except that the plane is tessellated into

regular hexagons.

Ac = 3/3 S6d
2/2

PC = 6S6d(l-p)
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c) Triangular model. This is analogous to the first

two models, but based on tessellation into equilateral

triangles.
= / 3 d2 /4SA c = /IS 3d2/

PC = 3S 3 d (l-p)

d) Poisson line model. In this model, a Poisson process

chooses points in the strip Ot-<7,--<p<. Each of

these points defines a line of the form xcos-+ysin&=p,

and these lines define a tessellation of the plane.

S4
Ac = -4

X2

PC = 2S 4 (l-p)/X

e) Occupancy model. In this model, a Poisson process

chooses points (called "nuclei") in the plane. Each

nucleus defines a "Dirichlet cell" consisting of all

the points in the plane that are nearer to it than to

any other nucleus.

Ac = S 6 /X

PC = 4S6 (1-P)/v

f) Delaunay model. The Delaunay tessellation is obtained

by joining all pairs of nuclei whose Dirichlet cells

are adjacent.

Ac = 33 /2
i32S 3 (-p)

3c -,T 3 /



2.2 Coverage models

Coverage or "bombing" models constitute the second class

of mosaic models that we consider. A coverage mosaic is ob-

tained by a random arrangement of a set of geometric figures

("bombs") in the plane.

We will now describe the class of binary coverage models.

Consider a geometric figure in the plane and identify it by

Wi the location of some distinguished point in the figure,

e.g. its center of gravity, hereafter called the center of

the figure; and (ii) the orientation of some distinguished

line in the figure, e.g. its principal axis of inertia. Let

a point process drop points on the plane and let each point

represent the center of a figure. Let each figure have an

orientation e according to some distribution function F(e).

By this process any fixed region A is randomly partitioned

into A 0 and A 1 = A-A0, where A 1 consists of that part of A

that is covered by the figures. By assigning two different

colors to A 0 and A., we get a binary coverage mosaic.

More generally, we can have more than one type of geometric

figure, with the sizes of each class of figures governed by a

certain probability distribution. These along with the nature

of the point process and the choices of the probability distri-

butions for color and orientation selection provide different

ways of controlling the characteristics of the resulting pat-

terns. For the experiments in this paper a single coverage
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r model was considered that uses upright squares of a fixed

size and color having their centers distributed by a Poisson

point process.

Figure 2 shows the expected total covered area, expected

component area and expected component perimeter, all as

functions of the expected number a of centers falling within

a single square.

I



3. Model fitting

The model fitting process may consist of the following

steps:

a) Observe as many different features on the image as

there are parameters defining the model. Use the ob-

served feature values and their known dependence on

the model parameters given in Section 2 to determine

the parameter values.

b) From the model thus specified, predict the values of

the remaining known features. Compare these predic-

tions with the observed values to estimate the model

fit.

Alternatively, one may treat the entire set of known

features simultaneously, and aim at obtaining values of the

parameters such that the predicted features best fit the ob-

served values. This avoids measuring the error only in terms

of some of the features while fitting some others exactly.

Both of these approaches yield error vectors epch consist-

ing of the absolute errors in the fits of various features for

a given model. The best model is the one that has the smallest

error vector. The identification of the smallest vector,

however, involves the following problems:

1) In the case when error in a single feature is being

considered,the selection of the best model is trivial. In the

general case, however, the individual terms in the vectors



must be normalized in order to obtain an overall error

measure. Usually, normalization is carried out by expres-

sing the error values in units of standard deviations. How-

ever, most known results for the mosaic models are for ex-

pected values, and not for distributions, or even standard
deviations.

2) In combining normalized errors, the degree of ortho-

gonality, or independence, among the corresponding features

must be taken into account. Thus, if two features are cor-

related their errors should not be treated separately. For

example, the area and perimeter of a convex shape completely

determine its expected width [1]. Hence for textures with

convex components the expected component width must not be

considered if the component area and perimeter errors are

used.

For these reasons, in this paper we use only one feature at a

time to test the model fit.

The known characteristics of mosaic models include geo-

metrical properties of components as well as correlation pro-

perties of pixels [1-51. Since the latter are curves (functions

of displacement) rather than single values, fitting them may

involve a complicated process of error evaluation. Geometrical

4properties have therefore been used for model fitting in this
paper.



4. Experimental results and discussion

Experiments were conducted on four textures from (6]

(four samples of each) and on three terrain textures (three

samples of each). Figure 3 (upper left) shows the samples of the

seven textures. A foreground on a lighter background was

identified in each of the images. An edge-based segmentation

procedure that groups edges detected in the image into region

boundaries by joining facing pairs of edge points [7] was

used to convert the gray level images into binary images (Figure 3,

upper right). Some of the small components may be due to noise.

Also, some adjacent components may have been joined by noise.

Without knowing the distribution of the component size, it is

difficult to identify such components. To partially alleviate

this problem, we have considered a set of binary images each

derived from the original segmentation by deleting 8-connected

components having areas smaller than a certain threshold. Figure

3 (bottom) shows the components having areas at least 10 and

at least 13.

All six cell structure models and the square coverage model

were considered. All of the cell structure models are complete-

ly specified in terms of the intensity of the point process

and the color probabiliy -vector. In binary patterns there

are only two colors. Therefore, the color probability vector

has only one independent entry. The square coverage model

is specified in terms of the intensity of the point process
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and the side length of the square. Each model is therefore

defined by two parameters. The values of a pair of features

observed on each of the images are thus sufficient to evaluate

the model parameters.

We now describe the features that we used in our experi-

ments, and their estimation from the image data. Other fea-

tures, such as component width, may also be used.

a) Black probability or total covered area

1) For cell structure models the fraction of the

total number of cells that are colored black in a tessellation

is an estimate of p. Since all the cells have the same expected

area, tne fraction of the total number of pixels in the image

that are black is also an estimate of p.

2) For square coverage models the fraction of the

area that is black is an estimate of the expected number a of

centers that fall within a single square (Fig. 2).

b) Expected component area

In general, some of the image components will touch

its borders and contribute only parts of their real areas to

the image. Ignoring the lost area yields an underestimate of

the expected component area. On the other hand if we consider

a window sufficiently deep in the interior then although some

of the components centered within the window do not completely

lie within the window, there are others that have centers



outside the window but contribute parts of their areas within

the window. Obviously the expected fraction of the area of a

component centered inside the window that lies outside the

window, or vice versa, is one-half [1]. Thus the total ef-

fective number of components that may be used for the compu-

tation of the expected component area is given by

Effective number of components within the window

Total number of components completely within the window-

1/2 (total number of components touching the window borders)

and

Expetedcomonen ara =Black area within the window
Expetedcomonen ara =Effective number of components

within the window

c) Expected component perimeter

As in the case of the area, the expected perimeter can

be obtained as________ ______

_Total perimeter within the window
Expected component perimeter Efetv=ubr fcmoet

within the window

We estimated the perimeter from the digital borders of

the components by weighting the steps connecting 4-neighbors

by unity, and those connecting diagonal neighbors by V'2.

The computations were done in parallel at all the black pixels

[8) instead of following the borders sequentially.

In our experiments (a) was always used as one of the two

observations necessary for the parameter evaluation. Each of

(b) and (c) was used once for the computation of the second



model parameter, and once for measuring the error in the model

fit. Table 1 presents the errors in the predicted values of

component perimeter and area, for samples of the seven tex-

tures of Fig. 3 , when the component area and perimeter, re-

spectively, are used for the model matching along with p.

The errors in the fits of the square coverage model to all

images are much higher than those of the other models and hence

are not listed. The errors are listed for the threshold values

of component size (10 and 13) which were found to most consis-

tently provide minimum errors by the best-fitting models,

within the range of size thresholds (0, 2, 4, 7, 10, 13, 16, 20)

that were used. For each texture sample and for each threshold

value, a six-tuple of errors is given corresponding to the

absolute differences in the predicted and the observed values

divided by the corresponding observed values. The six models

used are checkerboard, hexagonal, triangular, Poisson line, occu-

pancy, and Delaunay. The lowest errors are underlined, and the

next lowest are usually underlined with dashes.

From the table we can see that for the sand and grass

textures, the hexagonal and the occupancy models, respectively,

provide the best fits. For sand, the hexagonal model has the

minimum error for all samples and for both thresholds. For

grass the choice between hexagonal and occupancy models is

ambiguous at T = 10, but for T = 13 the occupancy model is



0: b ~E-4 Copnn Size Threshold T

Cn10 13

_ _ C H T P 0 D C H T P 0 D

1 Per .13 .00 .20 .11 .13 .28 .08 .06 .15 .17 .08 .23
Area .07 .00 .12 .05 .07 .18 .04 .03 .08 .08 .04 .14

2 Per .14 .13 .05 .45 .02 .05 .21 .23 .11 .53 .06 .00
0
0 Area .06 .06 .02 .17 .01 .03 .09 .10 .05 .19 .03 .00

3 Per .06 .01 .02 .35 .14 .12 .09 .08 .01 .39 .06 .09

Area .03 .00 .01 .14 .08 .06 .04 .04 .01 .15 .03 .05

1 Per .15 .35 .31 .46 .43 .18 .17 .33 .33 .49 .42 .20
Area .07 .24 .13 .17 .33 .08 .08 .22 .13 .18 .32 .09

H 2 Per .13 .33 .25 .44 .42 .12 .14 .32 .26 .46 .41 .14

Area .06 .22 .10 .17 .31 .06 .07 .21 .11 .17 .30 .06

Per .29 .19 .49 .65 .30 .35 .32 .17 .52 .68 .28 .37

Area .12 .11 .18 .22 .19 .14 .13 .10 .19 .23 .18 .15

1 Per .71 .01 .92 1.18 .14 .73 .75 .01 .96 1.23 .13 .77
Area .24 .01 .28 .32 .08 .24 .24 .00 .29 .33 .07 .25

S 2 Per .83 .04 1.08 1.33 .10 .88 .83 .04 1.08 1.33 .10 .88

Area .26 .02 .31 .34 .05 .27 .26 .02 .31 .34 .05 .27

3 Per .61 .11 .90 1.04 .23 .71 .62 .10 .92 1.06 .23 .73

Area .21 .06 .27 .30 .14 .24 .21 .05 .28 .30 .13 .24

1 Per .65 .05 .85 1.10 .18 .67 .89 .12 1.08 1.40 .03 .88

Area .22 .03 .26 .31. .10 .23 .27 .06 .31 .35 .01 .27

(a 2 Per .87 .18 1.16 1.38 .02 .95 1.14 .36 1.26 1.72 .17 1.04

1Area .27 .08 .32 .35 .01 .28 .32 .14 .33 .39 .08 .30

3 Per .58 .01 .61 1.01 .15 .45 .74 .14 .71 1.21 .02 .54

Area .20 .01 .21 .29 .08 .17 .24 .06 .23 .33 .01 .19

Table 1. Errors in fitting six models to samples of seven textures.

C = checkerboard, H = hexagonal, T = triangular,

P = Poisson line, 0 = occupancy, D = Delaunay.

For each sample, the row labelled "Per" or "Area" gives
the error in component perimeter (area) when the predicted
component area (perimeter) is matched to the observed area
(perimeter).



Component Size Threshold T

9410 13

C H T P 0 D C H T P 0 D

1 Per .04 .11 .11 .22 .04 .20 .03 .19 .05 .31 .03 .14
Area .02 .05 .06 .10 .02 .12 .01 .08 .03 .13 .01 .08

H2 Per .07 .08 .14 .19 .07 .22 .02 .13 .10 .24 .02 .19
Area .03 .04 .08 .08 .03 .13 .01 .06 .05 .10 .01 .11

SPer .10 .12 .02 .40 .03 .09 .18 .37 .09 .51 .18 .01
Area .05 .05 .01 .15 .02 .05 .08 .14 .04 .19 .08 .01

z 4 Per .33 .23 .13 .69 .06 .02 .44 .33 .37 .84 .16 .23
Area .13 .10 .06 .23 .03 .01 .17 .13 .15 .26 .07 .10

1 Per .70 .07 .96 1.16 .07 .77 .83 .15 1.11 1.33 .00 .91
ZArea .23 .03 .29 .32 .04 .25 .26 .07 .31 .35 .00 .28

Z Per .49 .07 .52 .90 .19 .37 .54 .04 .57 .96 .17 .41
Area .18 .04 .19 .27 .11 .15 .19 .02 .20 .29 .10 .16

zPer .35 .14 .43 .72 .26 .29 .45 .09 .48 .85 .22 .33

ZArea .14 .08 .16 .24 .16 .12 .17 .05 .18 .26 .13 .13

4 Per .85 .16 1.13 1.35 .01 .92 1.19 .39 1.32 1.79 .20 1.09

Area .26 .07 .32 .35 .00 .28 .32 .15 .34 .40 .09 .31

1 Per .29 .17 .14 .64 .01 .03 .30 .19 .16 .66 .03 .04

Area .12 .08 .06 .22 .01 .01 .12 .08 .07 .22 .01 .02

H 2 Per .14 .07 .05 .45 .08 .05 .24 .22 .14 .57 .06 .03
Area .06 .03 .03 .17 .04 .03 .10 .10 .06 .20 .03 .01

SPer .07 .24 .01 .37 .07 .11 .16 .34 .07 .48 .16 .03
Z Area .04 .10 .00 .14 .04 .06 .07 .14 .03 .18 .07 .02

w Per .19 .11 .10 .51 .04 .01 .21 .20 .12 .54 .04 .01
Area .08 .05 .05 .19 .02 .01 .09 .09 .05 .19 .02 .00

Table 1, continued



consistently better. The checkerboard model fairly consis-

tently describes the raffia texture at T - 13. Wool does

not seem to fit any of our models well, although at T = 13

the occupancy model consistently results in errors that are

second lowest.

Among the terrain textures the occupancy model gives the

minimum errors for all but one of the Mississippian samples

(T = 13). The Delaunay model provides a good fit to the Lower

Pennsylvanian samples (T = 13). For the Pennsylvanian samples,

the hexagonal model provides a fairly good fit to all but one

sample at T = 10, but at T = 13 the choice is ambiguous between

the hexagonal and occupancy models.

Thus in most cases, one model stands out as the best

choice. Also, the errors in perimeter and area almost always

support the same model. The consistency over the different

samples is good, although in some cases, e.g. Mississippian,

Pennsylvanian, and raffia, one sample appears to be signifi-

cantly different from the rest and supports a different model,

though the error corresponding to the model suggested by the

other samples is generally not much higher.

It is interesting to note that the given set of models pro-

vides errors that vary over a wide range, i.e., the minimum to

maximum error range in any six-tuple is usually large. This

shows that the models do have significant differences that are



relevant in the context of the images that we have used.

The choice of a given model, clearly, need not have any

implications about the physical process that may have

given rise to the image under consideration, i.e., this

process need not be related in any way to the planar geome-

trical process that defines the model. In our experiments,

for example, the models only characterize patterns by their

area-perimeter relationships. Each model embodies one such

relationship and the model chosen for a given image is that

whose area-perimeter curve in the feature space lies closest

to the point representing the observed values of these f ea-

tures.

Clearly, many other features could also be tried and the

consistency of the models that they suggest could then be

studied. Also the errors i.n Table 1 may be expressed in

alternative ways, so that the significance of variations in

error values over the samples, and from model to model, may

be studied on a statistical basis.
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Figure 2a. Fraction of covered area as
a function of a.



Figure 2b. Expected component area as
a function of a1.
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